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Formula t ions  and pr inc ip les  for  obtaining s tab le  solut ions of var ious  i nve r se  p rob l ems  ap-  
pl icable  in the physics  of heat  and in heat  engineer ing a r e  d i scussed .  

1. In the fields of the physics  of heat  and heat  engineer ing,  as  in many other  f ields of sc ien t i f i c -  
indust r ia l  act ivi ty ,  expe r imen ta l  invest igat ions a r e  highly au tomated .  Prev ious ly  acceptab le  "manual"  
methods for  the t r e a t m e n t  of data a r e  no longer  in a condition to cope with the abundant volume of in for -  
mat ion.  On the other  hand, this  in format ion  contains m o r e  p r e c i s e  data concerning the objects studied 
because  of the inc reased  accu racy  of observa t ion .  The p r o b l e m  is to l e a r n  to ex t rac t  the data by using 
a l l  the in format ion  furnished by obse rva t ions .  

The development  of compute r  technology offers  a bas i s  for  the solution of this p rob lem.  Fo r  ra t iona l  
use  of a computer  for  the specif ied purpose ,  however ,  it is n e c e s s a r y  to devote pa r t i cu la r  at tent ion to the 
c o r r e c t n e s s  of the ma themat i ca l  fo rmula t ion  of the p rob l em and t o  the development  of s table  a lgor i thms  
for  the solution.  This  p r i m a r i l y  r e f e r s  to  the i nve r se  p rob l ems  with which this pape r  is  c o n c e r n e d .  By 
" i n v e r s e "  is  meant  a p rob l em  in which the Studied object  or  de te rmined  quantity is inaccess ib le  (or dif-  
f icultly access ib l e )  by d i rec t  invest igat ion,  and conclus ions  about i ts  p r o p e r t i e s  a r e  reached  on the b a s i s  
of indirect  m e a s u r e m e n t s  of quanti t ies which a r e  the effects  of the p rope r t i e s  sought for .  

We a s s u m e  that  a cause -and -e f f ec t  r e l a t ion  has  been  es tab l i shed  between the p rope r ty  sought for and 
the observed  quantity.  We then  a r r i v e  at  a ma thema t i ca l  fo rmula t ion  of the i nve r se  p rob lem.  

A ma themat i ca l  p r o b l e m  is label led c o r r e c t l y  formula ted  i f  i t  s a t i s f i e s  the following th ree  condit ions:  

1) a solut ion of the p rob l em  exis ts  for  any input data;  

2) the solution is unique; 

3) the solut ion is  s table  with r e s p e c t  t o  sma l l  pe r tu rba t ions  of the input data .  

A p r o b l e m  which does not sa t i s fy  at  l eas t  one of these  conditions is labelled inco r rec t ly  formula ted .  

Inve r se  p rob l ems  belong among the i nco r r ec t l y  formula ted  p r o b l e m s .  If the "solution" is  c a r r i e d  
out on a computer ,  one often obse rves  that  when the final approx imat ion  of the p rob lem is more  exact ,  
the approx imat ion  to  the solution is  obtained with a g r e a t e r  e r r o r  and has nothing in common  with the 
ac tual  solution.  

Never the les s ,  the p r ac t i ce  of physica l  r e s e a r c h  has for  a long t ime  given r i s e  to a need to "solve"  
i nco r r ec t ly  formula ted  p r o b l e m s .  The i r  solution was ord inar i ly  based  on s impl i f ied  models  of an ob jec t  
or  phenomenon where  the la t ter  a r e  cha r ac t e r i z ed  by a sma l l  number  of p a r a m e t e r s .  For  example ,  the 
method of t r i a l  and e r r o r  in the solut ion of such p rob lems  is  well  known. It is na tura l  that only ex t r eme ly  
a p p r o x i m a t e  r ep re sen t a t i ons  of the p rope r t i e s  of an  object or of the c h a r a c t e r i s t i c s  of a defined quantity 
can  be  obtained by this method.  Such an  approach  to  the solut ion of a p r o b ! e m d o e s n o t  use  a l l  the poten- 
t ia l i t ies  furnished by modern  levels  of observa t iona l  a ccu racy  and by the development  of compute r  t ech -  
nology. 

These  potent ia l i t ies  can be used for  a study of new formula t ions  of i nve r se  p rob lems  and in the e m -  
ployment  of r ecen t ly  p roposed  s tab le  a lgor i thms  for  the i r  solution.  The development  of  such formulat ions  
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and a lgor i thms is not mere ly  a mathemat ica l  problem, but a genera l  theore t ica l  problem, the solution of 
which is only possible through the c lose col laborat ion of physicis ts  and mathemat ic ians .  

We consider  in somewhat g r ea t e r  detail and in ra ther  genera l  fo rm the co r rec tnes s  of the mathe-  
matical  formulat ion of inverse  problems in heat conduction. 

2. Mathematics is a means for  the cognition of natural phenomena in order  to control  them. The 
cognition p rocess  is always associa ted  with the construct ion of some model, the co r rec tnes s  of which is 
verif ied by prac t ica l  means.  

Let z be a sought-for  proper ty  of a model and u (an effect of z) be a quantity which is compared  with 
an actually observed quantity. The d i rec t  problem with respec t  to the determinat ion of u for a given z is 
r epresen ted  by the express ion 

A (z) = u ,  (1) 

where it is assumed that the solution of this problem is unique (a completely  defined u cor responds  to 
each z). For  example, if z is a boundary t empera tu re  mode, a unique value of the t empera tu re  (u) at 
any point within the heated body cor responds  to this mode. In this ease,  the opera tor  A is a well-known 
integral  express ion  for a one-dimensional  sys tem with constant t he rma l  proper t ies .  

The observed quantity ~ i s  usually given with some e r r o r  jJt~ --  uIJ - 5, where t~ is the exact value of 
the "observable ."  

We a re  in teres ted in the inverse  problem:  to find z f rom given'~.  In the "c lass ica l"  formulat ion 
taci t ly  assumed in pract ice ,  one is talking of the solution of the opera tor  equation (1), where u = u'o We 
fur ther  a s sume that the law for the cor respondence  z ~ u (the opera tor  A) is adequate for the actual  r e -  
lationship between these quantities.  Then the specified formulat ion is incor rec t  p r imar i ly  for the reason  
that there  may be no solution of Eq. (1) for a given u; u ~ Az for every  z, and it is not difficult to point to 
examples of such a situation. Fu r the rmore ,  the question of the uniqueness of the solution of this inverse  
problem requi res  special  study. 

Finally, perturbations of the z sought for as large as desi red may cor respond  in Eq. (1) to smal l  pe r -  
turbations of ~, i . e . ,  to a given u, that is,  the solution is unstable with respec t  to small  per turbat ions of 
the input data.  Thus the search  for an exact solution of Eq. (1) with approximate  input data is an incor -  
rec t ly  formulated problem for this reason .  

A more  natural formulation of the inverse  problem which considers  the fact that u d o e s  not neces -  
sa r i ly  cor respond prec ise ly  to the model selected for z consists  of a de terminat ion  of all elements z s a t i s -  
fying the inequality 

]lAz - -  uJ] ~ 6. (2) 

Indeed, all z satisfying Eq. (2) a re  equivalent f rom the viewpoint of the select ion of a model for a given 
e r r o r  level 6 of the input data and in the absence of any additional information about the desired model. 

In such a formulation, inverse  problems a re  no different than ordinary  problems,  since the input 
data a re  given with a cer ta in  e r r o r  in all cases  and the "solution" of a problem with approximate data is 
always some "region" of values of z. 

Fur ther ,  if the d iameter  of the specified region is sufficiently small ,  as is the case by r eason  of 
stabili ty in cor rec t ly  formulated problems,  the formulat ion of the problem (2) can be changed; in this 
case one can select  any element z sat isfying the inequality (2) as a solution. 

However, for incor rec t ly  formulated problems,  the diameter  of the reg ion  of values of z c o r r e -  
sponding to (2), general ly speaking, is unbounded. Consequently the problem (2) is quite undetermined and 
in this ease it is impossible to select  any element satisfy.ing the inequality (2) as an approximate solution 
of this inverse  problem, since it may be quite far  f rom z, which best  cha rac te r i zes  the model. 

There  then a r i ses  the problem of selecting an approximation f rom the elements satisfying (2). The 
se lect ion can be made on the basis of additional information about the des i red  model. P r imar i ly  this in- 
formation can be used for a pr ior i  l imitations (quantitative limitations in prac t ica l  problems) on the region 
of values of z [1]. These limitations reduce  the d iameter  of the region of values access ib le  to the in- 
equality (2) and thus the problem may be brought into the class  of co r rec t ly  formulated problems.  It is 
well known how such an approach is rea l ized  in the t r i a l - a n d - e r r o r  method where limitations in the form 
of inequalities a re  imposed on z. 
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Along with this ,  it is poss ib le  to use  additional in format ion  of a quali tat ive nature  for  the se lec t ion  
of a s table  approx imat ion  with r e s p e c t  to a solut ion of the i nve r se  p rob l em f r o m  among the e lements  s a t i s -  
fying the inequali ty (2). A pa r t i cu l a r  example  of this is in format ion  about the smoothness  of the solution 
sought for  (if z is a function of a r e a l  var iab le ) .  F u r t h e r m o r e ,  the resu l t an t  approx imat ion  z5 sa t i s f i es  
the following pr inciple :  If z is a model  for  which A~ = t~ and Lid - ul] -< 6, then z$ --" z when 5 --- 0. Ap-  
prox imat ions  to  a solution of the i nve r s e  p rob l em which sa t i s fy  this pr inciple  a r e  called r egu la r i zed  ap -  
p rox imat ions  and a lgor i thms  for  t he i r  cons t ruc t ion  a r e  cal led r egu la r i z ing  a lgor i thms  [2, 3]. 

We shal l  not d iscuss  r egu la r i z ing  a lgor i thms  for  the solution of i nco r rec t ly  formula ted  p rob lems  
in g r e a t e r  detai l ,  s ince  they will be  the subject  of s e p a r a t e  p a p e r s .  We point out that z5 is a solution of 
a c e r t a i n  supp lemen ta ry  ma themat i ca l  p r o b l e m  which takes  into account  addit ional informat ion  about the 
des i r ed  solution. 

Toge the r  with the specif ied pr inciple ,  t he r e  a r e  other  poss ib le  pr inc ip les  for  the se lec t ion  of an ap-  
p rox ima t ion  f r o m  the family of equivalences  cor responding  to the inequali ty (2) which a r e  based  on the 
s t a t i s t i ca l  c h a r a c t e r i s t i c s  of the model .  

3. I nve r se  p r o b l e m s ,  pa r t i cu l a r ly  i n t h e  physics  of heat  ~nd in heat  engineering,  can be c lass i f ied  
with r e spec t  to level  of complexi ty  in the following manner :  

a) The Development  of a Sys tem for  the Analys is  of Exper imenta l  Resu l t s .  This  p rob lem is under -  
stood in a b road  sense ;  the idea of "ana lys i s  ~ includes both p r i m a r y  ana lys i s ,  for  example ,  s t a t i s t i ca l  
ana lys i s  of data,  as well as i n t e rp re t a t ion  of the data f r o m  the Viewpoint of construct ing a model  of the 
object  under  study. A s y s t e m  of ana lys i s  for  which the input in format ion  is just expe r imen ta l  data was 
developed recen t ly  at Moscow Univers i ty  [4]. The incorpora t ion  of such s y s t e m s  solves  the p rob l em of 
inc reas ing  product ivi ty .  

b) The P r o b l e m  of Sys tem and Ins t rument  Construct ion.  In p rob l ems  of this kind, supp lementa ry  a 
p r i o r i  in format ion  may include r e q u i r e m e n t s  a s soc ia t ed  with the opportunit ies  for  technical  rea l iza t ion .  
In th is  case ,  ~ = u in the formula t ion  of the p rob l em (2), where  t~ is a des i r ed  effect  of the model  sought 
for. 

An exact solution of a problem such as (I) (where u = t~) may also be lacking in this case. There 
are examples of solutions of such problems by means of regularizing algorithms [5]. 

In these problems one can use "quasi-inversion" algorithms [6] together with regularizing algor- 
ithms. An appropriate algorithm does not assume convergence of the selected approximation z6 to any 
element of the family of equivalences, which may be a redundant requirement in the sense of the problem. 
However, the formulation of the problem given by the authors of the quasi- inversion method does not also 
take  into account  conditions for  the p rac t i ca l  r ea l i za t ion  of the se lec ted  model ,  which may be impor tan t  for  
the  solut ion of an i nve r se  p rob l em  of this kind. 

c) The P r o b l e m  of Recogni t ion of the C h a r a c t e r i s t i c s  of a P r o c e s s  Controll ing Observed Phenomena.  
In the physics  of heat ,  one can  place  in this c lass  both p rob l ems  involving the de te rmina t ion  of boundary 
t e m p e r a t u r e s  or  t h e r m a l  modes  and p rob l ems  involving the de te rmina t ion  of the t h e r m a l  c h a r a c t e r i s t i c s  
of m a t e r i a l s  in operat ing s y s t e m s .  We cons ider  below some  examples  of p rev ious ly  solved p rob lems  o f  
this  kind. 

4. A typica l  p rob l em  of the type c) is the p rob l em concerning the c l imat ic  h i s to ry  of the planet ,  the 
ma themat i ca l  formula t ion  of which has been  given [7] along with a proof  of the uniqueness of the solution. 
I ts  subject  is a study of the t e m p e r a t u r e  va r ia t ion  on the su r f ace  of the ear th  in previous  t imes  f rom m e a -  
su red  data at a g iven t ime  for  the t e m p e r a t u r e  at  var ious  depths within the ear th .  In the s a m e  c lass  of 
p rob l ems  is the r econs t ruc t ion  of the boundary t e m p e r a t u r e  conditions for  a heated body f r o m  t e m p e r a t u r e  
m e a s u r e m e n t s  at some  in ternal  point.  A regu la r i z ing  a lgor i thm is used for  the solution of such a p ro b l em 
[8] within the confines of a one-d imens iona l  model  with constant  t h e r m a l  c h a r a c t e r i s t i c s .  If one includes 
as  supp lemen ta ry  in format ion  the r e q u i r e m e n t  for  m a x i m u m  smoothness  of the approx imat ion  se lec ted  
f r o m  the family  of equivalences  accord ing  to (2), it tu rns  out that the boundary t e m p e r a t u r e  is r eproduced  
independently of the ma themat i ca l  c h a r a c t e r  of the r e g i m e  with the accu racy  of reproduct ion  being c o m -  
pa rab l e  to the accu racy  of m e a s u r e m e n t .  

The s a m e  paper  a l so  showed the ineff iciency of the ex t rapola t ion  method for  the solution of this p rob -  
l e m  which, even for  "exact"  input data,  leads to  a s y s t e m a t i c  e r r o r  of up to 50% ffor the models  d i scussed  
in the paper ) .  
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Problems similar to this one were discussed in a number of subsequent papers which are partially 

represented in the program of this seminar [9, I0]. In particular, using a similar formulation [i0] and 
information about the smoothness of the solution, associates of Moscow University in collaboration with a 
scientific-industrial organization solved a problem involving the reproduction of the thermal flux at the 
surface of a body from the same data. It was solved for a more complex model of a system including a 
given nonlinear temperature dependence of the thermal characteristics of the body (k, c, p); one of the 
subsequent reports will discuss the problem in greater detail. 

In the problems mentioned above, one was talking about the determination (with the help of regu- 
larizing algorithms) of some controlling function. Thermal parameters of a material were assumed 
known (constant or a given function of temperature), determined, for example, by a laboratory study of 
the thermal conductivity of the material. 

However, the method of laboratory study of the parameters mentioned is not always acceptable and 
not necessarily optimal. On the other hand, the use of regularizing algorithms makes it possible to de- 
termine these thermal parameters efficiently from a dynamic experiment (on the basis of data similar to 
that given above) so that the results of theory and experiment are in good agreement [inequality (2)]. Such 
a problem was solved by us in a related field [Ii]. 

The study of the model of a phenomenon can be carried out systematically in two stages on the whole. 
First, thermal parameters characterizing the model are determined in a dynamic experiment. In this 
case, the data from actual experiments can be used as "initial approximations" to the parameter values. 
After the thermal characteristics have been determined, one can solve the problem involving a broader 
study of the model, particularly of control by the process. 

As an illustration of a heat-engineering problem of this kind, we consider the ventilation problem 
[12]. 

Air which gives up heat to the walls is blown through a duct. In this case, it is reasonable to con- 
s ider  only the normal  thermal  conductivity of the wall, neglecting its t he rma l  conductivity along the duct, 
and, on the other hand, to consider  only longitudinal thermal  conductivity for the a i r  flow. By considering 
the development of the p rocess  in the initial stage, one can solve the p rob lem in l inear approximation.  
Under these assumptions,  the equation of thermal  balance in the duct has the fo rm 

vScoPo ' a u  _ Q =Scop ~ a__u_u , (3) 
Ox at 

where u = u(x, t) is the t empera tu re  in the duct (x is the coordinate along the the rmal  flux); S is the c r o s s -  
sect ional  a rea  of the duet; o 0 and P0 a re  the thermal  constants of the a i r ;  Q is the amount of heat r e -  
leased;  v is the velocity of a i r  flow. 

Let v = v(x, z, t) be the t empera tu re  of the wall. We assume that this t empera tu re  at the internal 
boundary of the wall is equal to the t empera tu re  of the a i r  in the duct, v(x, O, t) = u(x, t); the initial tern- 
pe ra tu re  of the wall is s ta t ionary and we can a s sume  it to be zero, taking readings  f rom the appropria te  
value.  In turn, we assume the a i r  t empera tu re  at the beginning of the duet is given, u(O, t) = #(t) (as is 
always done in the formal izat ion of a model). 

Neglecting the right side in the equation of balance,  which is a lso reasonable  f rom the sense of the 
problem (otherwise, one could a r r ive  at the same resul t  by a change in the t ime re fe rence  point), we 
finally a r r ive  at the following sys t em of equations:  

where L is the pe r ime te r  of the duet; 

vScoP o - -  
au 

- Q = 0 ,  
ax  

av 
(x, O, t), 

Oz 
Q = - - k L  

av a~v 

at az 2 ' 

v (x ,  0 = v ( x ,  O, t), 

u (0, t) = ~ (t), 

v (x, z, 0 ) : 0 ,  

k and a 2 a re  thermal  constants of the wall. 

(4) 



It is then easy  to show that  the function u(x, t) sa t i s f i es  the conditions of the well-known p rob l em 
for  the equation of t h e r m a l  conductivity,  

Ou O2u 
- - a  2 - ,  u(O, t )=~( t ) ,  u(x, 0 ) = 0 ,  (5) 

.... Ot Ox ~ 

where  c and o a r e  the cor responding  t h e r m a l  c h a r a c t e r i s t i c s  of the wall,  ~2 = ( L / v S ) 2 a 2 ( c O / c o ; o ) 2  with the 
coefficient  a being de te rmined  by a s im i l a r i t y  c r i t e r ion .  

Thus we have a r r i v e d  at a known p r o b l e m  of t h e r m a l  conductivity which es tab l i shes  within the con- 
fines of the se lec ted  model  the dependence between the observed  [u(x, t)] and unknown [a2, #(t)] quanti t ies .  

In the plan for  the solution of the i nve r se  p rob lem,  which is of i n t e re s t  to  us,  it is convenient to de -  
t e r m i n e  the se t  of t h e r m a l  constants  by ana lys i s  of the r e su l t s  of a dynamic exper iment  ffor example ,  
f r o m  the t e m p e r a t u r e  in some  c r o s s  sec t ion  x = x 0). In turn ,  knowledge of the specif ied constants  makes  
it poss ib le  to  solve the p rob l em  of opt imal  control  in r e s p e c t  to  the de te rmina t ion  of: 1) the r a t e  of vent i -  
la t ion n e c e s s a r y  to reduce  the t e m p e r a t u r e  of the wall  to a given value and 2) the min imum expenditure of 
power  for  the amount  of a i r  blown through to achieve  this  goal .  
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